

100G QSFP28 Direct Attach Cable (DAC)

NN-QSFP28-100G-DAC

Overview:

The Netro's NN-QSFP28-100G-DAC Direct Attach Cables are compliant with the SFF-8665 specifications. Various choices of wire gauge are available from 30 to 24 AWG with various choices of cable length (up to 5m).

Application:

• 100G Ethernet

Features:

- Compliant with SFF- 8665
- Up to 28.3125Gbps data rate per channel
- Up to 5m transmission
- Operating temperature: 0~70°C
- Single 3.3V power supply
- RoHS compliant

Benefits:

- Cost-effective copper solution
- Lowest total system power solution
- Lowest total system EMI solution
- Optimized design for Signal Integrity

Pin Description:

Pin	Logic	Symbol	Description	
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	

Data Sheet

DAC Cable NNQ-QSFP28-100G-DAC

5	CML-I	Tx4n	Transmitter Inverted Data Input			
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input			
7		GND	Ground			
8	LVTTL-I	ModSelL	Module Select			
9	LVTTL-I	ResetL	Module Reset			
10		Vcc Rx	+3.3V Power Supply Receiver			
11	LVCMOS- I/O	SCL	2-wire serial interface clock			
12	LVCMOS- I/O	SDA	2-wire serial interface data			
13		GND	Ground			
14	CML-O	Rx3p	Receiver Non-Inverted Data Output			
15	CML-O	Rx3n	Receiver Inverted Data Output			
16		GND	Ground			
17	CML-O	Rx1p	Receiver Non-Inverted Data Output			
18	CML-O	Rx1n	Receiver Inverted Data Output			
19		GND	Ground			
20		GND	Ground			
21	CML-O	Rx2n	Receiver Inverted Data Output			
22	CML-O	Rx2p	Receiver Non-Inverted Data Output			
23		GND	Ground			
24	CML <mark>-0</mark>	Rx4n	Receiver Inverted Data Output			
25	CML- <mark>O</mark>	Rx4p	Receiver Non-Inverted Data Output			
26		GND	Ground			
27	LVTTL- <mark>O</mark>	ModPrsL	Module Present			
28	LVTTL-O	IntL	Interrupt			
29		Vcc Tx	+3.3V Power supply transmitter			
30		Vcc1	+3.3V Power supply			
31	LVTTL-I	LPMode	Low Power Mode			
32		GND	Ground			
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input			
34	CML-I	Tx3n	Transmitter Inverted Data Input			
35		GND	Ground			
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input			
37	CML-I	Tx1n	Transmitter Inverted Data Input			
38		GND	Ground			

Data Sheet DAC Cable

NNQ-QSFP28-100G-DAC

Top Side Viewed From Top

9 10 VccRx SCL 11 12 13 14 15 SDA GND RX3p Rx3n 16 17 GND RX1p RX1n 18 GND 19

GND

TX2n

TX2p

GND

TX4n

TX4p

GND

ModselL

ResetL

1

6 7 8

Bottom Side Viewed From Bottom

General Product Characteristics:

QSFP+ DAC Specifications				
Number of Lanes	Tx & Rx			
Channel Data Rate	28.3125 Gbps			
Operating Temperature	0 to + 70°C			
Storage Temp <mark>eratu</mark> re	-40 to + 85°C			
Supply Voltage	3.3 V nominal			
Electrical Interface	38 pins edge connector			
Management Interface	Serial, I ² C			

High Speed Characteristics:

Parameter	Symbol	Min	Тур	Max	Units	Notes
Differential Impedance	Zd	90	100	110	Ω	
		<-12+2* SQRT (f) with f in GHz			dB	0.01~4.1GHz
Differential Input Return Loss	SDDXX	<-6.3+13* Log10/(f/5.5) with f in GHz			dB	4.1~19GHz
Common Mode Output Return Loss	sccxx	< -7+1.6*f with f in GHz		dB	0.01~12.89GHz	
				-3	dB	12.89~19GHz
Difference Waveform	dWDPc			6.75	dB	
Distortion Penalty						

Data Sheet

DAC Cable NNQ-QSFP28-100G-DAC

VMA Loss	L		4.4	dB	
VMA Loss to Crosstalk Ratio	VCR	32.5		dB	

Mechanical Specifications:

The connector is compatible with the SFF-8665 specification.

Regulatory Compliance:

Feature	Test Method	Performance
Electrostatic Discharge		
(ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)
Electromagnetic FCC Class B		Compliant with Standards
Interference(EMI) CENELEC EN55022 Class B		
	CISPR22 ITE Class B	
		Typically Show no Measurable Effect from a 10V/m Field
RF Immunity(RFI)	IEC61000-4-3	Swept from 80 to 1000MHz
RoHS Compliance	RoHS Directive 2011/65/EU	RoHS 6/6 compliant
	and it's Amendment	